Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Plant Physiol ; 190(4): 2137-2154, 2022 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-36111879

RESUMEN

In Arabidopsis (Arabidopsis thaliana), the plastidial isoform of phosphoglucose isomerase (PGI1) mediates photosynthesis, metabolism, and development, probably due to its involvement in the synthesis of isoprenoid-derived signals in vascular tissues. Microbial volatile compounds (VCs) with molecular masses of <45 Da promote photosynthesis, growth, and starch overaccumulation in leaves through PGI1-independent mechanisms. Exposure to these compounds in leaves enhances the levels of GLUCOSE-6-PHOSPHATE/PHOSPHATE TRANSLOCATOR2 (GPT2) transcripts. We hypothesized that the PGI1-independent response to microbial volatile emissions involves GPT2 action. To test this hypothesis, we characterized the responses of wild-type (WT), GPT2-null gpt2-1, PGI1-null pgi1-2, and pgi1-2gpt2-1 plants to small fungal VCs. In addition, we characterized the responses of pgi1-2gpt2-1 plants expressing GPT2 under the control of a vascular tissue- and root tip-specific promoter to small fungal VCs. Fungal VCs promoted increases in growth, starch content, and photosynthesis in WT and gpt2-1 plants. These changes were substantially weaker in VC-exposed pgi1-2gpt2-1 plants but reverted to WT levels with vascular and root tip-specific GPT2 expression. Proteomic analyses did not detect enhanced levels of GPT2 protein in VC-exposed leaves and showed that knocking out GPT2 reduced the expression of photosynthesis-related proteins in pgi1-2 plants. Histochemical analyses of GUS activity in plants expressing GPT2-GUS under the control of the GPT2 promoter showed that GPT2 is mainly expressed in root tips and vascular tissues around hydathodes. Overall, the data indicated that the PGI1-independent response to microbial VCs involves resetting of the photosynthesis-related proteome in leaves through long-distance GPT2 action.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Glucosa-6-Fosfato/metabolismo , Proteómica , Arabidopsis/metabolismo , Glucosa-6-Fosfato Isomerasa/metabolismo , Almidón/metabolismo , Glucosa/metabolismo , Fosfatos/metabolismo
2.
Viruses ; 14(4)2022 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-35458418

RESUMEN

Helicoverpa armigera single nucleopolyhedrovirus (HearSNPV) is a virulent pathogen of lepidopterans in the genera Heliothis and Helicoverpa, whereas Helicoverpa armigera multiple nucleopolyhedrovirus (HearSNPV) is a different virus species with a broader host range. This study aimed to examine the consequences of coocclusion of HearSNPV and HearMNPV on the pathogenicity, stability and host range of mixed-virus occlusion bodies (OBs). HearSNPV OBs were approximately 6-fold more pathogenic than HearMNPV OBs, showed faster killing by approximately 13 h, and were approximately 45% more productive in terms of OB production per larva. For coocclusion, H. armigera larvae were first inoculated with HearMNPV OBs and subsequently inoculated with HearSNPV OBs at intervals of 0-72 h after the initial inoculation. When the interval between inoculations was 12-24 h, OBs collected from virus-killed insects were found to comprise 41-57% of HearSNPV genomes, but the prevalence of HearSNPV genomes was greatly reduced (3-4%) at later time points. Quantitative PCR (qPCR) analysis revealed the presence of HearSNPV genomes in a small fraction of multinucleocapsid ODVs representing 0.47-0.88% of the genomes quantified in ODV samples, indicating that both viruses had replicated in coinfected host cells. End-point dilution assays on ODVs from cooccluded mixed-virus OBs confirmed the presence of both viruses in 41.9-55.6% of wells that were predicted to have been infected by a single ODV. A control experiment indicated that this result was unlikely to be due to the adhesion of HearSNPV ODVs to HearMNPV ODVs or accidental contamination during ODV band extraction. Therefore, the disparity between the qPCR and end-point dilution estimates of the prevalence of mixed-virus ODVs likely reflected virus-specific differences in replication efficiency in cell culture and the higher infectivity of pseudotyped ODVs that were produced in coinfected parental cells. Bioassays on H. armigera, Spodoptera frugiperda and Mamestra brassicae larvae revealed that mixed-virus OBs were capable of infecting heterologous hosts, but relative potency values largely reflected the proportion of HearMNPV present in each mixed-virus preparation. The cooccluded mixtures were unstable in serial passage; HearSNPV rapidly dominated during passage in H. armigera whereas HearMNPV rapidly dominated during passage in the heterologous hosts. We conclude that mixed-virus coocclusion technology may be useful for producing precise mixtures of viruses with host range properties suitable for the control of complexes of lepidopteran pests in particular crops, although this requires validation by field testing.


Asunto(s)
Mariposas Nocturnas , Nucleopoliedrovirus , Animales , Larva , Virulencia
3.
Viruses ; 13(7)2021 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-34202228

RESUMEN

Enhancins are metalloproteinases that facilitate baculovirus infection in the insect midgut. They are more prevalent in granuloviruses (GVs), constituting up to 5% of the proteins of viral occlusion bodies (OBs). In nucleopolyhedroviruses (NPVs), in contrast, they are present in the envelope of the occlusion-derived virions (ODV). In the present study, we constructed a recombinant Autographa californica NPV (AcMNPV) that expressed the Trichoplusia ni GV (TnGV) enhancin 3 (En3), with the aim of increasing the presence of enhancin in the OBs or ODVs. En3 was successfully produced but did not localize to the OBs or the ODVs and accumulated in the soluble fraction of infected cells. As a result, increased OB pathogenicity was observed when OBs were administered in mixtures with the soluble fraction of infected cells. The mixture of OBs and the soluble fraction of Sf9 cells infected with BacPhEn3 recombinant virus was ~3- and ~4.7-fold more pathogenic than BacPh control OBs in the second and fourth instars of Spodoptera exigua, respectively. In contrast, when purified, recombinant BacPhEn3 OBs were as pathogenic as control BacPh OBs. The expression of En3 in the soluble fraction of insect cells may find applications in the development of virus-based insecticides with increased efficacy.


Asunto(s)
Vectores Genéticos/genética , Granulovirus/genética , Granulovirus/patogenicidad , Proteínas Virales/genética , Proteínas Virales/metabolismo , Animales , Larva/virología , Metaloproteasas , Mariposas Nocturnas/citología , Mariposas Nocturnas/virología , Cuerpos de Oclusión Viral , Células Sf9 , Spodoptera/virología
4.
Plant Cell Environ ; 42(5): 1729-1746, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30480826

RESUMEN

A "box-in-box" cocultivation system was used to investigate plant responses to microbial volatile compounds (VCs) and to evaluate the contributions of organic and inorganic VCs (VOCs and VICs, respectively) to these responses. Arabidopsis plants were exposed to VCs emitted by adjacent Alternaria alternata and Penicillium aurantiogriseum cultures, with and without charcoal filtration. No VOCs were detected in the headspace of growth chambers containing fungal cultures with charcoal filters. However, these growth chambers exhibited elevated CO2 and bioactive CO and NO headspace concentrations. Independently of charcoal filtration, VCs from both fungal phytopathogens promoted growth and distinct developmental changes. Plants cultured at CO2 levels observed in growth boxes containing fungal cultures were identical to those cultured at ambient CO2 . Plants exposed to charcoal-filtered fungal VCs, nonfiltered VCs, or superelevated CO2 levels exhibited transcriptional changes resembling those induced by increased irradiance. Thus, in the "box-in-box" system, (a) fungal VICs other than CO2 and/or VOCs not detected by our analytical systems strongly influence the plants' responses to fungal VCs, (b) different microorganisms release VCs with distinct action potentials, (c) transcriptional changes in VC-exposed plants are mainly due to enhanced photosynthesis signaling, and (d) regulation of some plant responses to fungal VCs is primarily posttranscriptional.


Asunto(s)
Arabidopsis/microbiología , Arabidopsis/fisiología , Expresión Génica/efectos de los fármacos , Compuestos Orgánicos Volátiles/farmacología , Alternaria/metabolismo , Dióxido de Carbono/metabolismo , Monóxido de Carbono/metabolismo , Óxido Nítrico/biosíntesis , Óxido Nítrico/metabolismo , Penicillium/metabolismo , Fotosíntesis/efectos de los fármacos
5.
PLoS One ; 12(2): e0171245, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28152100

RESUMEN

Although there is a great wealth of data supporting the occurrence of simultaneous synthesis and breakdown of storage carbohydrate in many organisms, previous 13CO2 pulse-chase based studies indicated that starch degradation does not operate in illuminated Arabidopsis leaves. Here we show that leaves of gwd, sex4, bam4, bam1/bam3 and amy3/isa3/lda starch breakdown mutants accumulate higher levels of starch than wild type (WT) leaves when cultured under continuous light (CL) conditions. We also show that leaves of CL grown dpe1 plants impaired in the plastidic disproportionating enzyme accumulate higher levels of maltotriose than WT leaves, the overall data providing evidence for the occurrence of extensive starch degradation in illuminated leaves. Moreover, we show that leaves of CL grown mex1/pglct plants impaired in the chloroplastic maltose and glucose transporters display a severe dwarf phenotype and accumulate high levels of maltose, strongly indicating that the MEX1 and pGlcT transporters are involved in the export of starch breakdown products to the cytosol to support growth during illumination. To investigate whether starch breakdown products can be recycled back to starch during illumination through a mechanism involving ADP-glucose pyrophosphorylase (AGP) we conducted kinetic analyses of the stable isotope carbon composition (δ13C) in starch of leaves of 13CO2 pulsed-chased WT and AGP lacking aps1 plants. Notably, the rate of increase of δ13C in starch of aps1 leaves during the pulse was exceedingly higher than that of WT leaves. Furthermore, δ13C decline in starch of aps1 leaves during the chase was much faster than that of WT leaves, which provides strong evidence for the occurrence of AGP-mediated cycling of starch breakdown products in illuminated Arabidopsis leaves.


Asunto(s)
Arabidopsis/metabolismo , Hojas de la Planta/metabolismo , Almidón/metabolismo , Western Blotting , Isótopos de Carbono , Luz , Maltosa/metabolismo , Hojas de la Planta/efectos de la radiación
6.
Plant Physiol ; 172(3): 1989-2001, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27663407

RESUMEN

Volatile compounds (VCs) emitted by phylogenetically diverse microorganisms (including plant pathogens and microbes that do not normally interact mutualistically with plants) promote photosynthesis, growth, and the accumulation of high levels of starch in leaves through cytokinin (CK)-regulated processes. In Arabidopsis (Arabidopsis thaliana) plants not exposed to VCs, plastidic phosphoglucose isomerase (pPGI) acts as an important determinant of photosynthesis and growth, likely as a consequence of its involvement in the synthesis of plastidic CKs in roots. Moreover, this enzyme plays an important role in connecting the Calvin-Benson cycle with the starch biosynthetic pathway in leaves. To elucidate the mechanisms involved in the responses of plants to microbial VCs and to investigate the extent of pPGI involvement, we characterized pPGI-null pgi1-2 Arabidopsis plants cultured in the presence or absence of VCs emitted by Alternaria alternata We found that volatile emissions from this fungal phytopathogen promote growth, photosynthesis, and the accumulation of plastidic CKs in pgi1-2 leaves. Notably, the mesophyll cells of pgi1-2 leaves accumulated exceptionally high levels of starch following VC exposure. Proteomic analyses revealed that VCs promote global changes in the expression of proteins involved in photosynthesis, starch metabolism, and growth that can account for the observed responses in pgi1-2 plants. The overall data show that Arabidopsis plants can respond to VCs emitted by phytopathogenic microorganisms by triggering pPGI-independent mechanisms.


Asunto(s)
Alternaria/química , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Arabidopsis/microbiología , Glucosa-6-Fosfato Isomerasa/metabolismo , Plastidios/enzimología , Compuestos Orgánicos Volátiles/farmacología , Alternaria/efectos de la radiación , Arabidopsis/crecimiento & desarrollo , Arabidopsis/fisiología , Pared Celular/metabolismo , Pared Celular/efectos de la radiación , Citocininas/metabolismo , Luz , Células del Mesófilo/efectos de los fármacos , Células del Mesófilo/metabolismo , Células del Mesófilo/efectos de la radiación , Mutación/genética , Fotosíntesis/efectos de la radiación , Plastidios/efectos de los fármacos , Proteoma/metabolismo , Almidón/metabolismo
7.
Plant Cell Environ ; 39(12): 2592-2608, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27092473

RESUMEN

It is known that volatile emissions from some beneficial rhizosphere microorganisms promote plant growth. Here we show that volatile compounds (VCs) emitted by phylogenetically diverse rhizosphere and non-rhizhosphere bacteria and fungi (including plant pathogens and microbes that do not normally interact mutualistically with plants) promote growth and flowering of various plant species, including crops. In Arabidopsis plants exposed to VCs emitted by the phytopathogen Alternaria alternata, changes included enhancement of photosynthesis and accumulation of high levels of cytokinins (CKs) and sugars. Evidence obtained using transgenic Arabidopsis plants with altered CK status show that CKs play essential roles in this phenomenon, because growth and flowering responses to the VCs were reduced in mutants with CK-deficiency (35S:AtCKX1) or low receptor sensitivity (ahk2/3). Further, we demonstrate that the plant responses to fungal VCs are light-dependent. Transcriptomic analyses of Arabidopsis leaves exposed to A. alternata VCs revealed changes in the expression of light- and CK-responsive genes involved in photosynthesis, growth and flowering. Notably, many genes differentially expressed in plants treated with fungal VCs were also differentially expressed in plants exposed to VCs emitted by the plant growth promoting rhizobacterium Bacillus subtilis GB03, suggesting that plants react to microbial VCs through highly conserved regulatory mechanisms.


Asunto(s)
Citocininas/fisiología , Flores/crecimiento & desarrollo , Desarrollo de la Planta/fisiología , Plantas/microbiología , Compuestos Orgánicos Volátiles/metabolismo , Alternaria/fisiología , Arabidopsis/microbiología , Arabidopsis/fisiología , Flores/fisiología , Regulación de la Expresión Génica de las Plantas/fisiología , Fotosíntesis/fisiología , Reacción en Cadena en Tiempo Real de la Polimerasa , Rizosfera , Transcriptoma/fisiología
8.
Plant Sci ; 238: 135-47, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26259182

RESUMEN

We characterized multiple knock-out mutants of the four Arabidopsis sucrose phosphate synthase (SPSA1, SPSA2, SPSB and SPSC) isoforms. Despite their reduced SPS activity, spsa1/spsa2, spsa1/spsb, spsa2/spsb, spsa2/spsc, spsb/spsc, spsa1/spsa2/spsb and spsa2/spsb/spsc mutants displayed wild type (WT) vegetative and reproductive morphology, and showed WT photosynthetic capacity and respiration. In contrast, growth of rosettes, flowers and siliques of the spsa1/spsc and spsa1/spsa2/spsc mutants was reduced compared with WT plants. Furthermore, these plants displayed a high dark respiration phenotype. spsa1/spsb/spsc and spsa1/spsa2/spsb/spsc seeds poorly germinated and produced aberrant and sterile plants. Leaves of all viable sps mutants, except spsa1/spsc and spsa1/spsa2/spsc, accumulated WT levels of nonstructural carbohydrates. spsa1/spsc leaves possessed high levels of metabolic intermediates and activities of enzymes of the glycolytic and tricarboxylic acid cycle pathways, and accumulated high levels of metabolic intermediates of the nocturnal starch-to-sucrose conversion process, even under continuous light conditions. Results presented in this work show that SPS is essential for plant viability, reveal redundant functions of the four SPS isoforms in processes that are important for plant growth and nonstructural carbohydrate metabolism, and strongly indicate that accelerated starch turnover and enhanced respiration can alleviate the blockage of sucrose biosynthesis in spsa1/spsc leaves.


Asunto(s)
Arabidopsis/enzimología , Arabidopsis/genética , Técnicas de Inactivación de Genes , Glucosiltransferasas/genética , Mutación/genética , Almidón/metabolismo , Sacarosa/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Dióxido de Carbono/metabolismo , Respiración de la Célula/efectos de la radiación , Ciclo del Ácido Cítrico/efectos de la radiación , Gases/metabolismo , Glucólisis/efectos de la radiación , Isoenzimas/genética , Isoenzimas/metabolismo , Luz , Maltosa/metabolismo , Metaboloma/efectos de la radiación , Vía de Pentosa Fosfato/efectos de la radiación , Fenotipo , Hojas de la Planta/metabolismo , Hojas de la Planta/efectos de la radiación
10.
PLoS One ; 10(3): e0119641, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25811607

RESUMEN

Phosphoglucose isomerase (PGI) catalyzes the reversible isomerization of glucose-6-phosphate and fructose-6-phosphate. It is involved in glycolysis and in the regeneration of glucose-6-P molecules in the oxidative pentose phosphate pathway (OPPP). In chloroplasts of illuminated mesophyll cells PGI also connects the Calvin-Benson cycle with the starch biosynthetic pathway. In this work we isolated pgi1-3, a mutant totally lacking pPGI activity as a consequence of aberrant intron splicing of the pPGI encoding gene, PGI1. Starch content in pgi1-3 source leaves was ca. 10-15% of that of wild type (WT) leaves, which was similar to that of leaves of pgi1-2, a T-DNA insertion pPGI null mutant. Starch deficiency of pgi1 leaves could be reverted by the introduction of a sex1 null mutation impeding ß-amylolytic starch breakdown. Although previous studies showed that starch granules of pgi1-2 leaves are restricted to both bundle sheath cells adjacent to the mesophyll and stomata guard cells, microscopy analyses carried out in this work revealed the presence of starch granules in the chloroplasts of pgi1-2 and pgi1-3 mesophyll cells. RT-PCR analyses showed high expression levels of plastidic and extra-plastidic ß-amylase encoding genes in pgi1 leaves, which was accompanied by increased ß-amylase activity. Both pgi1-2 and pgi1-3 mutants displayed slow growth and reduced photosynthetic capacity phenotypes even under continuous light conditions. Metabolic analyses revealed that the adenylate energy charge and the NAD(P)H/NAD(P) ratios in pgi1 leaves were lower than those of WT leaves. These analyses also revealed that the content of plastidic 2-C-methyl-D-erythritol 4-phosphate (MEP)-pathway derived cytokinins (CKs) in pgi1 leaves were exceedingly lower than in WT leaves. Noteworthy, exogenous application of CKs largely reverted the low starch content phenotype of pgi1 leaves. The overall data show that pPGI is an important determinant of photosynthesis, energy status, growth and starch accumulation in mesophyll cells likely as a consequence of its involvement in the production of OPPP/glycolysis intermediates necessary for the synthesis of plastidic MEP-pathway derived hormones such as CKs.


Asunto(s)
Arabidopsis/metabolismo , Citocininas/metabolismo , Glucosa-6-Fosfato Isomerasa/metabolismo , Células del Mesófilo/metabolismo , Fotosíntesis , Almidón/metabolismo , Alelos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Eritritol/análogos & derivados , Eritritol/metabolismo , Sitios Genéticos , Glucosa-6-Fosfato Isomerasa/química , Glucosa-6-Fosfato Isomerasa/genética , Redes y Vías Metabólicas , Mutación , Fenotipo , Hojas de la Planta/metabolismo , Fosfatos de Azúcar/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...